Publications

  • [35] A. Andò and D. Breda, Numerical computation of periodic solutions of renewal equations from population dynamics, submitted.
  • [34] D. Breda, S. De Reggi, F. Scarabel, R. Vermiglio and J. Wu, Bivariate collocation for computing \(R_0\) in epidemic models with two structures, submitted.
  • [33] L. Pellis, F. Scarabel, H. B. Stage, C. E. Overton, L. H. K. Chappell, K. A. Lythgoe, E. Fearon, E. Bennett, J. Curran-Sebastian, R. Das, M. Fyles, H. Lewkowicz, X. Pang, B. Vekaria, L. Webb, T. House and I. Hall, Challenges in control of Covid-19: short doubling time and long delay to effect of interventions, submitted, arXiv: 2004.00117 [q-bio.PE], 2020.
  • [32] F. Scarabel, O. Diekmann and R. Vermiglio, Numerical bifurcation analysis of renewal equations via pseudospectral approximation, submitted, arXiv: 2012.05364 [math.NA], 2020.
  • [31] F. Scarabel, L. Pellis, N. H. Ogden and J. Wu, A renewal equation model to assess roles and limitations of contact tracing for disease outbreak control, submitted, medRxiv: 2020.12.27.20232934, 2021.
  • [30] A. Andò, D. Breda, D. Liessi, S. Maset, F. Scarabel and R. Vermiglio, 15 years or so of pseudospectral collocation methods for stability and bifurcation of delay equations, in series Adv. Delays Dyn., Springer, to appear.
  • [29] R. Vermiglio and A. Zamolo, Sensitivity analysis for stability of uncertain delay differential equations using polynomial chaos expansions, in series Adv. Delays Dyn., Springer, to appear.
  • [28] B. de Wolff, F. Scarabel, S. Verduyn Lunel and O. Diekmann, Pseudospectral approximation of Hopf bifurcation for delay differential equations, SIAM J. Appl. Dyn. Syst., to appear, arXiv: 2006.13810 [math.DS], 2020.
  • [27] D. Breda, F. Florian, J. Ripoll and R. Vermiglio, Efficient numerical computation of the basic reproduction number for structured populations, J. Comput. Appl. Math., 384 (2021), 113165, DOI: 10.1016/j.cam.2020.113165.
  • [26] A. Ramírez, D. Breda and R. Sipahi, A scalable approach to compute delay margin of a class of neutral-type time delay systems, SIAM J. Control Optim., 59 (2021), pp. 805–824, DOI: 10.1137/19M1307408.
  • [25] A. Andò and D. Breda, Collocation techniques for structured populations modeled by delay equations, in M. Aguiar, C. Braumann, B. W. Kooi, A. Pugliese, N. Stollenwerk and E. Venturino, eds., Current Trends in Dynamical Systems in Biology and Natural Sciences, SEMA SIMAI Springer Ser. 21, Springer, Cham, 2020, pp. 43–62, DOI: 10.1007/978-3-030-41120-6_3.
  • [24] A. Andò and D. Breda, Convergence analysis of collocation methods for computing periodic solutions of retarded functional differential equations, SIAM J. Numer. Anal., 58 (2020), pp. 3010–3039, DOI: 10.1137/19M1295015.
  • [23] A. Andò and D. Breda, Convergence analysis of collocation methods for computing periodic solutions of retarded functional differential equations, arXiv: 2008.07604 [math.NA], 2020. (full version of [24])
  • [22] A. Andò, D. Breda and G. Gava, How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology, Math. Biosci. Eng., 17 (2020), pp. 5059–5084, DOI: 10.3934/mbe.2020273.
  • [21] A. Andò, D. Breda and F. Scarabel, Numerical continuation and delay equations: A novel approach for complex models of structured populations, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), pp. 2619–2640, DOI: 10.3934/dcdss.2020165.
  • [20] D. Breda, T. Kuniya, J. Ripoll and R. Vermiglio, Collocation of next-generation operators for computing the basic reproduction number of structured populations, J. Sci. Comput., 85 (2020), 40, DOI: 10.1007/s10915-020-01339-1.
  • [19] D. Breda and D. Liessi, Floquet theory and stability of periodic solutions of renewal equations, J. Dynam. Differential Equations (2020), DOI: 10.1007/s10884-020-09826-7.
  • [18] D. Breda and D. Liessi, Approximation of eigenvalues of evolution operators for linear coupled renewal and retarded functional differential equations, Ric. Mat., 69 (2020), pp. 457–481, DOI: 10.1007/s11587-020-00513-9.
  • [17] O. Diekmann, F. Scarabel and R. Vermiglio, Pseudospectral discretization of delay differential equations in sun-star formulation: Results and conjectures, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), pp. 2575–2602, DOI: 10.3934/dcdss.2020196.
  • [16] F. Florian and R. Vermiglio, PC-based sensitivity analysis of the basic reproduction number of population and epidemic models, in M. Aguiar, C. Braumann, B. W. Kooi, A. Pugliese, N. Stollenwerk and E. Venturino, eds., Current Trends in Dynamical Systems in Biology and Natural Sciences, SEMA SIMAI Springer Ser. 21, Springer, Cham, 2020, pp. 205–222, DOI: 10.1007/978-3-030-41120-6_11.
  • [15] Z. McCarthy, Y. Xiao, F. Scarabel, B. Tang, N. L. Bragazzi, K. Nah, J. M. Heffernan, A. Asgary, V. K. Murty, N. H. Ogden and J. Wu, Quantifying the shift in social contact patterns in response to non-pharmaceutical interventions, J. Math. Ind., 10 (2020), 28, DOI: 10.1186/s13362-020-00096-y.
  • [14] F. Scarabel, D. Breda, O. Diekmann, M. Gyllenberg and R. Vermiglio, Numerical bifurcation analysis of physiologically structured population models via pseudospectral approximation, Vietnam J. Math. (2020), DOI: 10.1007/s10013-020-00421-3.
  • [13] F. Scarabel, L. Pellis, N. L. Bragazzi and J. Wu, Canada needs to rapidly escalate public health interventions for its COVID-19 mitigation strategies, Infectious Disease Modelling, 5 (2020), pp. 316–322, DOI: 10.1016/j.idm.2020.03.004.
  • [12] B. Tang, F. Scarabel, N. L. Bragazzi, Z. McCarthy, M. Glazer, Y. Xiao, J. M. Heffernan, A. Asgary, N. H. Ogden and J. Wu, De-escalation by reversing the escalation with a stronger synergistic package of contact tracing, quarantine, isolation and personal protection: Feasibility of preventing a COVID-19 rebound in Ontario, Canada, as a case study, Biology, 9 (2020), DOI: 10.3390/biology9050100.
  • [11] P. Getto, M. Gyllenberg, Y. Nakata and F. Scarabel, Stability analysis of a state-dependent delay differential equation for cell maturation: Analytical and numerical methods, J. Math. Biol., 79 (2019), pp. 281–328, DOI: 10.1007/s00285-019-01357-0.
  • [10] M. Sadeghpour, D. Breda and G. Orosz, Stability of linear continuous-time systems with stochastically changing delay, IEEE Trans. Automat. Control, 64 (2019), pp. 4741–4747, DOI: 10.1109/TAC.2019.2904491.
  • [9] D. Breda and S. Della Schiava, Pseudospectral reduction to compute Lyapunov exponents of delay differential equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), pp. 2727–2741, DOI: 10.3934/dcdsb.2018092.
  • [8] D. Breda and D. Liessi, Approximation of eigenvalues of evolution operators for linear renewal equations, SIAM J. Numer. Anal., 56 (2018), pp. 1456–1481, DOI: 10.1137/17M1140534.
  • [7] D. Breda, G. Menegon and M. Nonino, Delay equations and characteristic roots: Stability and more from a single curve, Electron. J. Qual. Theory Differ. Equ., 89 (2018), pp. 1–22, DOI: 10.14232/ejqtde.2018.1.89.
  • [6] M. Gyllenberg, F. Scarabel and R. Vermiglio, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, Appl. Math. Comput., 333 (2018), pp. 490–505, DOI: 10.1016/j.amc.2018.03.104.
  • [5] V. Clamer, A. Pugliese, D. Liessi and D. Breda, Host coexistence in a model for two host–one parasitoid interactions, J. Math. Biol., 75 (2017), pp. 419–441, DOI: 10.1007/s00285-016-1088-z.
  • [4] R. Vermiglio, Polynomial chaos expansions for the stability analysis of uncertain delay differential equations, SIAM/ASA J. Uncert. Quant., 5 (2017), pp. 278–303, DOI: 10.1137/15M1029618.
  • [3] D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel and R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1–23, DOI: 10.1137/15M1040931.
  • [2] D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theory Differ. Equ., 65 (2016), pp. 1–24, DOI: 10.14232/ejqtde.2016.1.65.
  • [1] R. Vermiglio, Numerical approximation of the non-essential spectrum of abstract delay differential equations, Math. Comput. Simulat., 125 (2016), pp. 56–69, DOI: 10.1016/j.matcom.2015.10.009.